

75th Anniversary of IUNS Workshop for World Food Day 2021

Nutrition Actions for a Healthy Future: Better Environment, Better Life

Mediterranean Diet and cardiovascular health: a 75 years perspective

Professor Jacques Delarue
French Nutrition Society
& Federation of European Nutrition Societies
President of ICN-IUNS Paris 2025

The first dietary survey in Crete in 1948

CRETE

A CASE STUDY OF

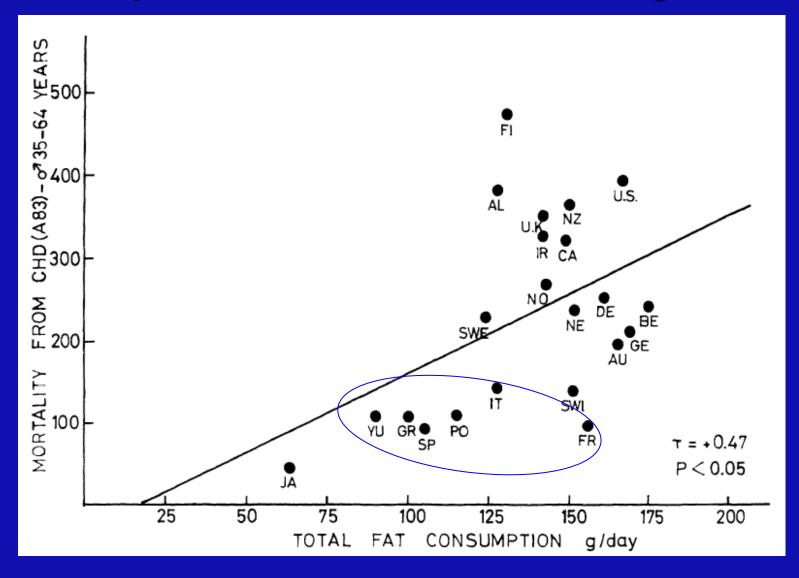
AN UNDERDEVELOPED

AREA

BY LELAND G. ALLBAUGH
FIELD DIRECTOR, CRETE SURVEY
THE ROCKEFELLER FOUNDATION

WITH THE EDITORIAL ASSISTANCE OF GEORGE SOULE

PRINCETON, NEW JERSEY
PRINCETON UNIVERSITY PRESS
1953


Table 16. Sources of calories consumed, by percentages, Crete, Greece, and United States, 1948

	Crete	Greece	United States	
Food Group	Fall 1948	Fiscal 1948-1949	1948-1949	
		(percentage of calories)		
Cereals	39	61	25	
Potatoes	4	2	3	
Sugar and honey	2	4.	15	
Pulses and nuts	7	6	3	
Vegetables and fruits	11	5	6	
Meat, fish and eggs	4	8	19	
Dairy products	3	4	14	
Oils and fats	29	15	15	
Wine, beer, and spirits	1	*	*	
Total	100	100	100	
Total calories per person				
per day	2,547	2,477	8,129	

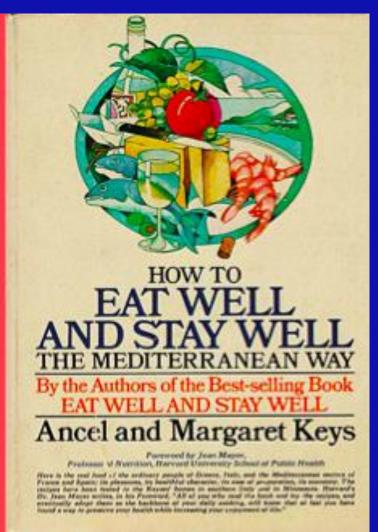
^{*} Not given.


Source: Crete: Sample Survey of Crete; Form Ia, Seven-day Diet. Greece: Food Balance Sheets for Greece, 1948-1949. Ministry of Coordination and Ministry of Agriculture, Athens. United States: Food Balance Sheets, 1950 Supplement. FAO. Washington, April 1950.

Fat consumption and CHD mortality in mid 70's

Ancel Keys contribution

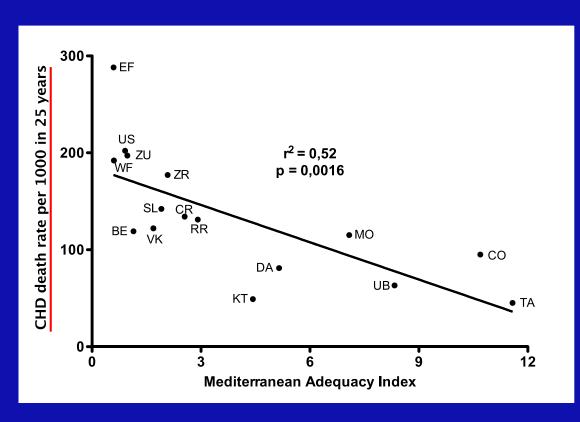
1961 Inclusion 1958-1964 1975

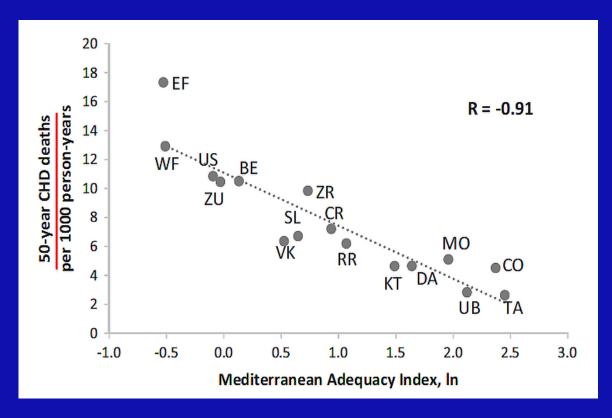

Seven Countries

A Multivariate Analysis of Death and Coronary Heart Disease

Ancel Keys

COMMONWEALTH FURE PUBLICATIONS


Mediterranean Adequacy Index (MDI) Reference MedDiet (Nicotera in Italy) in 1960


Age-group (years)	13–19	20–59	>60
n	12	18	7
Cereals	538	488	452
Vegetables	286	344	401
Legumes	55	49	62
Fruit	70	101	70
Fish	25	42	34
Edible fats	38	46	52
Meat	34	53	27
Eggs	11	20	11
Cheese	13	15	33
Milk (ml)	45	33	24
Sugar products	26	24	28
Wine (ml)	88	293	216

Sum of total energy percentages of food groups typical of a Reference MedDiet (bread, cereals, legumes, potatoes, vegetables, flesh fruit, nuts, fish, wine, vegetable oils) divided by the sum of the total energy percentages of the food groups much less typical of the Reference MedDiet (milk, cheese, meat, eggs, animal fats and margarines, sweet beverages, cakes/pie/cookies, sugar).

The Seven Countries Study

12 763 healthy men aged 40-59 years between 1958 and 1964. 16 cohorts from seven countries EF = East Finland; WF = West Finland; Zu = Zutphen, The Netherlands; US = US Railroad; BE = Belgrade; ZR = Zrenjanin; CR = Crevalcore; VK = Velika Krsn; RR = Rome Railroad; SL = Slavonia; DA = Dalmatia; KT = Crete; CO = Corfu; MO = Montegiorgio; UB = Ushibuka; TA = Tanushimaru

Fidanza et al. Nutr Metab Cardiovasc Dis 2004

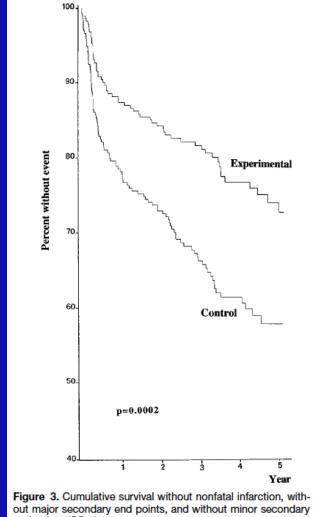
Kromhout et al. Eur J Clin Nutr 2018

Age of death from CHD after 45 y follow-up in the Seven Countries Study

	ALL CAUSES	CHD			
Cohort	Age at death, years	Death rate per 1000	Age at death, years		
US	74.5	278	71.4		
EF East Finl	and 70.9	383	− (68.0)		
WF	73.6	310	72.0		
ZU	74.5	265	71.5		
CR	73.5	178	72.4		
MO	74.9	134 12 ,	9 y → 74.4		
VK	74.2	155	77.3		
ZR	72.1	227	72.8		
BE	76.6	307	75.3		
KT Crete	78.6	120	80.9		
CO	76.4	123	74.4		
TA	75.6	67	75.1		
UB	73.1	70	70.2		
ALLa	74.5	224	73.5		

MedDiet and CV events: the RCTs

Lyon Diet Heart Study (1999)


The PREDIMED Study (2018)

Lyon Diet Heart Study (secondary prevention)

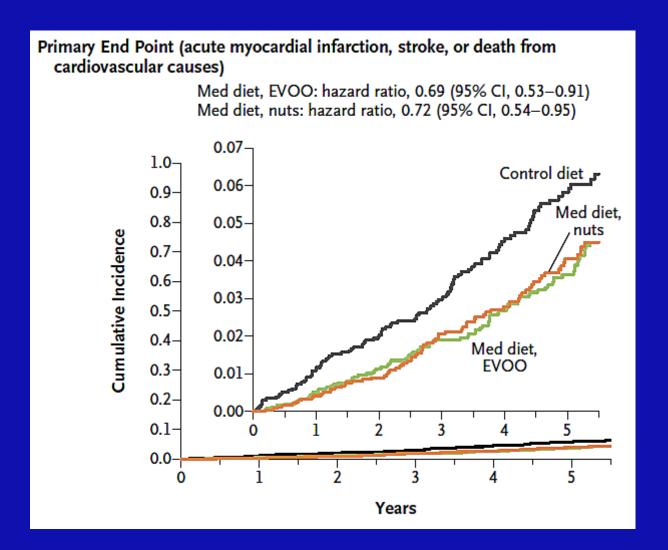
Experimental group (n = 302) Mediterranean type diet. Butter and cream replaced with a rapeseed (canola) oil-based margarine: 15 % SFAs, 48% oleic acid, 5.4% 18:1 trans, 16.4 % LA and 4.8% ALA). Seasoning oils: rapeseed and OOs. Moderate wine consumption allowed

Control group (n = 303) Low-fat step-1 diet of National **Cholesterol Education Program** (NCEP) for secondary prevention: < 30% of energy from fat, <10% from SFAs, and < 300 mg/d of cholesterol.

Cardiac deaths: RR = 0.35 (95% CI: 0.15, 0.83) Cardiac deaths + non-fatal MI: RR = 0.28 (95% CI: 0.15, 0.53)

end points (CO 3).

PREDIMED STUDY (primary prevention)

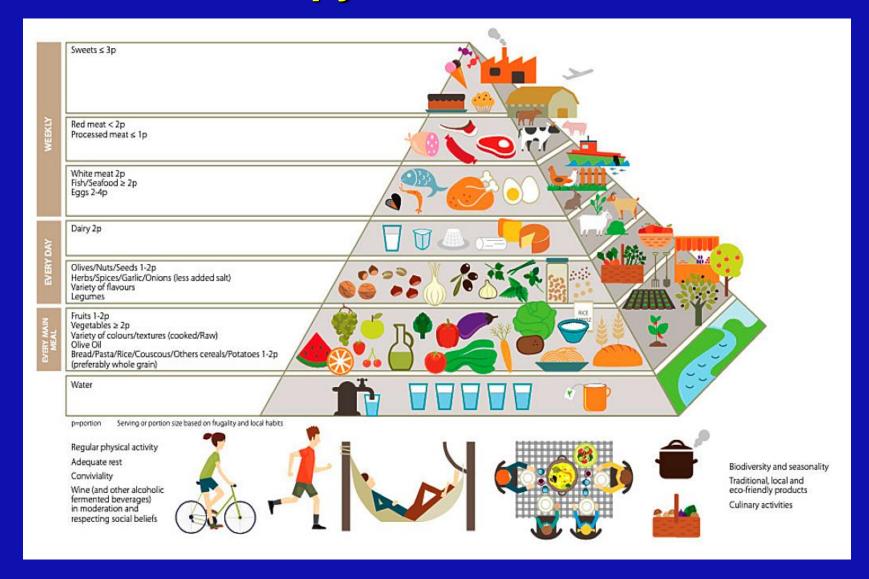

7 447 participants with a high CV risk (median follow-up: 4.8 y).

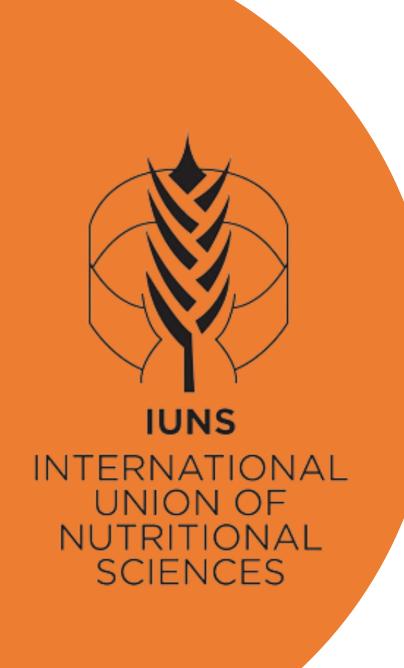
- MedDiet + EVOO (50 g/d)
- MedDiet (EVOO: 32 g/d) + nuts (6 servings/w)
- Control diet (advice to reduce dietary fat).

MACE: RR = 0.70 (95% CI: 0.55, 0.89) Stroke: RR = 0.58 (95% CI: 0.42, 0.82)

MI: RR = 0.80 (95% CI: 0.53, 1.21)

CV deaths: RR = 0.80 (95% CI: 0.51, 1.24).


Meta-analysis of effects of MedDiet towards CHD


References	Type of studies	Outcomes	n of studies	Comparison	Relative Risk	Risk reduction
Sofi et al.	cohorts	CVD incidence and/or mortality risk	35	2-point increment in MedDietS	0.90 (0.87,0.92)	10%
Grosso et al.	cohorts/RCTs/case-controls	CVD incidence	11	Highest quantile vs. lowest	0.76 (0.68,0.83)	24%
Grosso et al.	cohorts/RCTs/case-controls	CVD mortality	11	Highest quantile vs. lowest	0.76 (0.68,0.83)	24%
Grosso et al.	cohorts/RCTs/case-controls	CHD incidence	11	Highest quantile vs. lowest	0.72 (0.60,0.86)	28%
Grosso et al.	cohorts/RCTs/case-controls	MI incidence	11	Highest quantile vs. lowest	0.67 (0.54,0.83)	33%
Grosso et al.	cohorts/RCTs/case-controls	Stroke	11	Highest quantile vs. lowest	0.76 (0.60,0.96)	24%
Liyanage et al.	RCTs	MACE	6	MedDiet vs other diet	0.63 (0.53,0.75)	37%
Liyanage et al.	RCTs	CHD events	6	MedDiet vs other diet	0.65 (0.50,0.85)	35%
Liyanage et al.	RCTs	Stroke	6	MedDiet vs other diet	0.65 (0.48,0.88)	35%
Liyanage et al.	RCTs	Heart failure	6	MedDiet vs other diet	0.30 (0.17,0.56)	70%
Liyanage et al.	RCTs	CV mortality	6	MedDiet vs other diet	0.90 (0.72,1.11)	0%
Rosato et al.	cohorts	CVD incidence/mortality	29	Highest vs lowest MedDietS	0.81 (0.74,0.88)	19%
Rosato et al.	cohorts	CHD/MI	29	Highest vs lowest MedDietS	0.70 (0.62,0.80)	30%
Rosato et al.	cohorts	Stroke	29	Highest vs lowest MedDietS	0.73 (0.59,0.91)	27%
Galbete et al.	cohorts	CHD	12	2-point increment in MedDietS	0.72 (0.60,0.86)	28%
Galbete et al.	cohorts	MI incidence	12	2-point increment in MedDietS	0.67 (0.54,0.83)	33%
Dinu et al.	cohorts	CVD incidence	13	High vs low MedDietS	0.67 (0.58,0.77)	33%
Dinu et al.	cohorts	CVD mortality	13	High vs low MedDietS	0.75 (0.68,0.83)	25%
Dinu et al.	cohorts	CHD incidence	4	High vs low MedDietS	0.72 (0.60,0.86)	28%
Dinu et al.	cohorts	MI incidence	3	High vs low MedDietS	0.67 (0.54,0.83)	28%
Dinu et al.	cohorts	Stroke	5	High vs low MedDietS	0.76 (0.60,0.96)	28%
Martínez-González et al.	cohorts/RCTs	CVD risk	27	2-point increment in MedDietS	0.89 (0.86,0.91)	11%
Chen et al.	cohorts	Stroke	20	4-point increment in MedDietS	0.84 (0.81,0.88)	16%
Psaltopoulou et al.	cohorts	Stroke	11	Highest vs lowest MedDietS	0.71 (0.57,0.89)	29%
Kontogianni & Panagiotakos	review/meta-analysis	Stroke	14	Highest vs lowest MedDietS	0.58 (0.68,0.79)	42%
Becerra-Tomas et al.	RCTs	CVD incidence	3	MedDiet vs other diet	0.62 (0.50,0.78)	38%
Becerra-Tomas et al.	RCTs	MI incidence	3	MedDiet vs other diet	0.65 (0.49,0.88)	35%
Becerra-Tomas et al.	cohorts	CVD mortality	38	Highest vs lowest MedDietS	0.79 (0.77,0.82)	21%
Becerra-Tomas et al.	cohorts	CHD incidence	38	Highest vs lowest MedDietS	0.73 (0.62,0.86)	27%
Becerra-Tomas et al.	cohorts	CHD mortality	38	Highest vs lowest MedDietS	0.83 (0.75,0.92)	17%
Becerra-Tomas et al.	cohorts	Stroke	38	Highest vs lowest MedDietS	0.80 (0.71,0.90)	20%
Becerra-Tomas et al.	cohorts	MI incidence	38	Highest vs lowest MedDietS	0.73 (0.61,0.88)	27%

Other aspects

- There are many types of MedDiet depending on the Mediterranean country
- At least 22 adherence indexes to MedDiet have been published
- Beneficial effects of MedDiet are transferable to Non-Mediterranean Countries
- Beneficial proved health effects of MedDiet are far beyond CV health
- MedDiet tends to be abandoned by the youngest Mediterranean populations
- MedDiet should/must be revitalized in Mediterranean Countries
- MedDiet/MedDiet type is advocated by many national dietary recommendations
- MedDiet has a high socio-cultural value (Intangible Heritage of Unesco 2013)
- MedDiet is sustainable

Updated MedDiet pyramid towards sustainibility

Thank you for taking part in the IUNS 75th Anniversary Workshop for World Food Day 2021.