
SOIL HEALTH: A RIDGE TO
REEF ASSESSMENT OF SOIL
PROPERTIES ALONG THE
VAISIGANO RIVER AND
POTENTIAL
CLIMATE CHANGE
IMPACTS

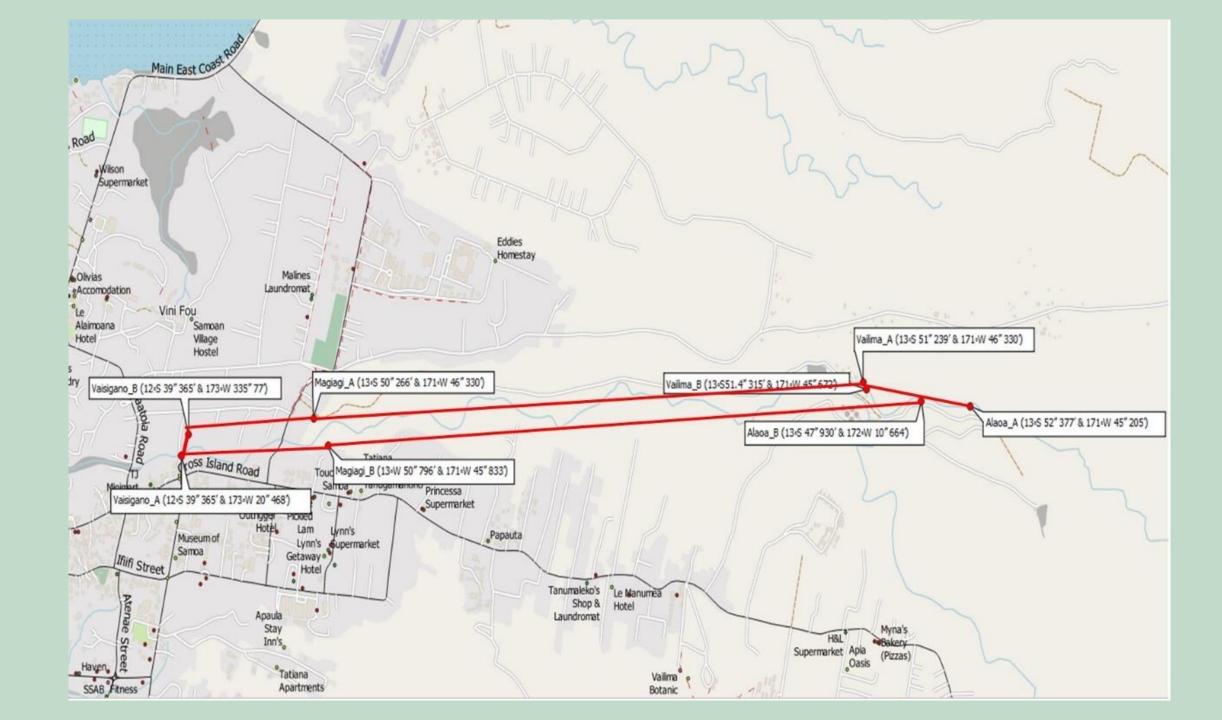
Bernadette. Amosa

Contents

- 1. Introduction
 - i. Rationale of study
 - ii. Main research question
 - iii. Objectives
- 2. Methodology
- 3. Results and Discussion
- 4. Conclusion
- 5. Recommendation
- 6. Research jour
- 7. Journey in Samoa

Introduction

Rationale:


Limited Data Regarding
Soil Health;
Build data or add more to
the data pool of Samoa;
To seek potential changes
in soil well-being in contrast
to the past

Main Research Question:

What is the current trend of the health status of soil in Samoa from ridge to reef (R2R) and how climate change a global issue influences the changes within the properties of Soil?

Objectives:

- 1. Assess the health status of soil using physical, chemical and biological indicators.
- 2. Compare the spatial and temporal distribution of micro/macronutrients in soil.
- 3. Investigate climatic factors influencing soil carbon and soil health.

- Collection of samples
 - Sieving of samples

ANALYTICAL ANALYSIS:

Physical properties: moisture factor & soil texture (on-site) Biological analysis: soil microbial biomass C Physical analysis: pH, Electroconductivity (EC), Cation Exchange Capacity (CEC), Soil

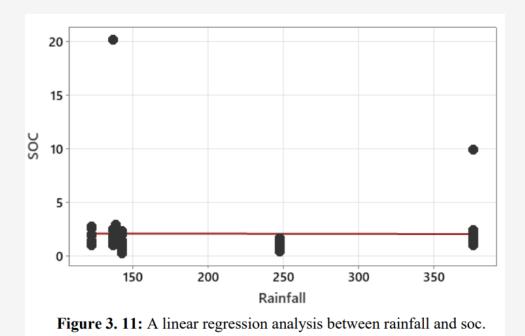
Organic Carbon (SOC), C: N ratio, and the concentration of macronutrients (Olsen

Phosphorous (OP) and Total N; exchangeable bases, Ca, K, Mg, Na) and micronutrients

Methodology

STATISTICAL ANALYSIS RAINFALL PATTERN ANALYSIS **Table 3.1:** Physical distribution of moisture factor and soil type of site 1 (mean \pm SE).

Sites	Moisture Factor	Soil Texture
	$Mean \pm SE$	
Ala_a	1.08 ± 0.02	Sandy Loam
Ala_b	1.07 ± 0.01	Sandy Loam
Vail_a	1.05 ± 0.02	Sandy Loam
Vail_b	1.04 ± 0.01	Sandy Loam
Mag_a	1.07 ± 0.01	Sandy Loam
Mag_b	1.06 ± 0.01	Sandy Loam
Vais_a	1.06 ± 0.01	Sandy Loam
Vais_b	1.07 ± 0.01	Sandy Loam


Table 3.2: Mean distribution of pH, EC, CEC, SOC, Total N, and C: N of all sites (mean ± SE)									
Site	рН	EC mS/m	CEC meq/100g	SOC %	C: N Ratio				
Ala_a	6.48 ± 0.11	30.47 ± 3.48	15.89 ± 4.11	2.69 ± 1.47	$10.5:1 \pm 2.62$				
Ala_b	6.38 ± 0.12	42.33 ± 4.82	25.07 ± 4.92	1.73 ± 0.16	11.7 :1± 2.27				
Vail_a	6.17 ± 0.11	40.78 ± 3.64	22.43 ± 5.04	5.02 ± 3.02	$13.6:1 \pm 3.48$				
Vail_b	5.08 ± 0.49	24.15 ± 5.45	16.77 ± 2	1.31 ± 0.26	$8.9:1 \pm 1.36$				
Mag_a	6.62 ± 0.1	29.7 ± 10.4	14.77 ± 0.7	1.78 ± 0.41	$23.3:1 \pm 8.02$				
Mag_b	7 ± 0.08	28.57 ± 6.9	16.66 ± 1.43	1.14 ± 0.12	$13.7:1 \pm 2.09$				
Vais_a	6.83 ± 0.11	39.27 ± 3.05	24.3 ± 5.26	1.29 ± 0.12	$16.2:1 \pm 4.47$				
Vais_b	6.5 ± 0.14	44.8 ± 9.06	33.88 ± 9.61	2.14 ± 0.31	$30.4:1 \pm 7.94$				
Total	6.4 ± 0.16	35 ± 4.55	21.2 ± 4.13	2.14 ± 0.73	$16\text{:}01 \pm 4.01$				

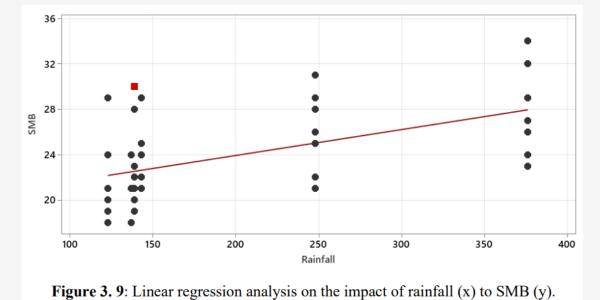

Figure 3. 2: Afiamalu station rainfall data from March- August.

Figure 3.2: Apia station rainfall data from March to August.

150 200 250 300 350 Rainfall

Conclusion

 Except for pH, the other selected variables such as SOC, CEC, and Total N have decreased since then. Existing studies in Samoa have to be carried to seek reasons and factors responsible for such changes. However, nonlatent/qualitative evidence was provided such as the construction of water and power stations in Alaoa and Vailima, new developments along the river of sites Magiagi and Vaisigano.

• Therefore, except for the variables related to climate change, other chemical properties, physical and biological properties are still adequate.

Limitations & recommendations

- The same study on other locations of Samoa such as the heavily populated Apia, Vaitele should be considered (industrialized area).
- 10 year analysis on soil health should be considered as another indicator to assess climate change impacts from ridge to reef.
- This has the potential to create a large and accurate data pool if carried out for a longer timeframe such as every 10 years.

Journey as a researcher in Samoa